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Measurements of the integrated cross sections and angular distributions of the C12(C12,o;)Ne20 reactions, 
for alpha particles leaving Ne20 in the ground state and first excited state, are averaged over the energy 
interval of 10.15 to 12.8 MeV (in the center-of-mass frame) and compared with calculations based on the 
statistical theory of nuclear reactions. The calculations employ optical-model transmission functions of the 
correct energy for each of the channels open to the compound nucleus. The applicability of the statistical 
theory to heavy-ion reactions is discussed. Quantitative estimates are made of the random error in calculated 
cross sections arising from the finite size of the averaging interval and the cross-section fluctuations in the 
interval. Generally good agreement is obtained between calculated and measured average cross sections for 
both the magnitude of integrated cross sections and the shape of angular distributions. The statistical 
theory calculations are combined with experimental values of total level widths (found in a parallel paper 
discussing the cross-section fluctuations underlying our average cross sections) to yield level spacings in 
Mg24, at excitation energies of 20-25 MeV. Individual level spacings for states with J H = 2+, 4+, 8+lead to 
estimates of the spin cutoff parameter. The corresponding value of the moment of inertia for the highly 
excited states of Mg24 is considerably larger than that of the ground-state band. 

1. INTRODUCTION 

FOR several decades, formulas based on the com
pound-nucleus picture have been employed to 

describe the gross features of average cross sections 
for heavy-ion reactions. More recently, the average 
cross-section theory has evolved into a useful quantita
tive tool and the theory of cross-section fluctuations 
has been developed to describe the cross-section struc
ture underlying the average. In the present paper we 
employ the modern statistical theory of nuclear re
actions to obtain quantitative estimates of the average 
cross sections of the C12(C12,a)Ne20 reactions, for alpha-
particle emission to the ground state and first excited 
state of Ne20. The experiments, described in a parallel 
paper,1 were made at center-of-mass energies between 
10.15 and 12.8 MeV. The parallel paper also discusses 
the description of the cross-section structure with the 
theory of fluctuations. The results of the two papers 
complement each other: On the one hand, the esti
mates of average cross sections for individual partial 
waves yield the weight coefficients required in the 
preceding paper to compare observed fluctuations with 
theory; on the other hand, the analysis of fluctuations 
enables us here to estimate the effect of the finite size 
of the averaging interval. 

2. THEORY OF AVERAGE CROSS SECTIONS 

In the theory of average cross sections2 the angle-
integrated cross section ow averaged over compound 
nucleus fluctuations may be written 

5aa*=(ic/k*) E j n [ ( 2 / + l ) / ( 2 J + l ) ( 2 i + l ) ] 

Y..'1'TvW) 
X{Y,*iTi{a)} 

Hc»Tv,{c") 
(1) 

1 E. Almqvist, J. Kuehner, D. McPherson, and E. Vogt, Phys. 
Rev. 136, B86 (1964), preceding paper. 

2 A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 
(1958). See also E. W. Vogt, Rev. Mod. Phys. 34, 723 (1962). 

where unprimed quantities refer to the incoming channel 
c, primed quantities to the outgoing channel cf> and the 
sum in the denominator runs over all possible outgoing 
channels. The quantum numbers of each channel c are 
c= (a,I,i,s,l,J,Mj,H) where a labels the pair of particles 
and their state of excitation, / and i are intrinsic spins, 
s is the channel spin ( s=I+i) , / the orbital angular 
momentum, J the total angular momentum (J=J+s) , 
Mj its z component (assumed to be averaged over and 
ignored) and II the total parity. In (1), ka is the wave 
number of the incident channel. The transmission 
functions Ti(a) of (1) may be calculated from the com
plex phase shifts di of the optical-model potential appro
priate to each pair of particles 

« T , / ( 1 + T V 4 ) * 

~ T * ( T K < 1 ) , 

with 
rr s2ir<iyn>/ZV 

(2) 

(2a) 

where the approximate connection between transmission 
functions on the one hand, and average partial widths 
and level spacings on the other, follows from nuclear 
reaction theory2,3 (see discussion below). If the optical-
model potential contains a spin-orbit term, then the 
phase shifts and transmission functions depend on the 

3 The connection between T and r of Eq. (2) is two-valued. For 
r = 4, T=l, but for any other value of T, r has two possible 
values. To resolve any ambiguity we note that for a black nucleus 
T increases to the value 4 as the penetrability approaches its 
maximum value P —> kR, where R is the nuclear radius. The 
higher values of r are not possible for a black nucleus. For an 
optical potential at low energy, the transmission functions are 
very small and r might be very small or very large; however, the 
penetrability makes r small so that no ambiguity exists. At high 
energies, r can exceed the value 4 in the vicinity of a giant reso
nance so that the connection (2) is both approximate and uncer
tain. We use the connection mostly for heavy ions at moderate 
energies with large imaginary potentials which remove giant 
resonances. Hence, we can quite safely restrict the value of r to 
be less than 4 thus making the connection (2) single-valued. 

B99 



B 100 V O G T , M C P H E R S O N , K U E H N E R , A N D A L M Q V I S T 

channel spin s. For the reactions we are considering, 
such spin-orbit terms are unimportant and the trans
mission functions are then equal for all channel spins 
allowed by angular momentum conservation (J=l+s) . 

The expression for the average angular distribution 
corresponding to (1) is 

&daa' 1 1 
= HL Z / n {Hsi Ti(a)} 

dQ 4£2 (21+1) (2i+l) 

TVW) 
X £ H v T , .AW"'*1*) 

XZ(rjl'J;s'L)(-)™'PL(cosO), (3) 

where the Z's are the usual Z coefficients and the 
PL(COSO) are Legendre polynomials. 6 is the angle of 
the outgoing particles relative to the incident beam. 

The use of the formula (1) for our heavy-ion reactions 
is more fashionable than theoretical. On the one hand, 
the result (1) follows from a combination of funda
mental conservation laws with optical-model concepts 
without direct introduction of the compound nucleus; 
on the other hand, it follows from proper theories of 
the compound nucleus only in rather simple cases. We 
discuss both derivations to understand the applica
bility of the statistical theory to heavy ion reactions. 

The result (1) for the average integrated cross sec
tion aaa' follows directly from the following as
sumptions : 

(A) Total angular momentum / and parity II are 
conserved allowing us to write 

G act' - E j n O'aa' (4) 

(B) Each aaa'
jn may be written as a product of two 

factors 

va«>J^t<T*JU{comV)jTa,™/Y,c>> 7 > ' n ] , (5) 

where the first factor is a compound-nucleus formation 
cross section, depending only on the incoming channel 
a. The second factor is a branching ratio whose nu
merator involves only the outgoing channel af and 
whose denominator involves a sum over all possible 
reaction channels. (The Ta

JU will be identified with 
transmission functions below but for the moment we 
regard them merely as branching ratio quantities.) 

(C) The average cross section w / n obeys a re
ciprocity theorem of the following kind: 

ft<x v aa' ft a.' f a'a • v u y 

Equations (6) and (5) lead at once to a connection 
between the branching ratio and the compound-nucleus 
formation cross section of the corresponding channel. 
The connection is 

[ T V ' V E c - TV'*-] 

= &«'V«^ n(comp)/X> Jfe^Ve^Ccomp). (7) 

(D) For each channel, the compound-nucleus forma
tion cross section is equal to the absorption cross sec
tion o-a(abs) of the optical-model potential for the 
channel. If the complex phase shifts of the optical-
model potential are 5i, then 

c7a(abs) = - E K 2 / + l ) ( l ~ | ^ | 2 ) 
k2 

7T (2J+1) J+s I+i 

E E (l-l^'l2) 
k2 (2I+l)(2i+l) *=*-* *=\*-i\ 

^E^n<7</ n (comp) . (8) 

The conservation of parity is ensured by having the 
total parity II equal to the product of ( — )l and the 
parity of the two particles in the channel. Use of (8) 
in (7) leads to 

r / n ( a ) = i - | ^ | 2 
(9) 

[cf. (2), above] 

for / , /, sy II satisfying conservation of total angular 
momentum and parity, and 2 V n = 0 otherwise. [The 
superscripts JU on the transmission functions may be 
suppressed as in (1) and (3) if these conservation laws 
are understood.] Then we obtain, from (9), (8), and 
(5), the desired result (1) for the average integrated 
cross section daa' of the statistical theory. The similar 
result (3) for the angular distribution is obtained in the 
same way with the additional assumption that incoming 
waves (and outgoing waves) of different orbital angular 
momentum do not, on the average, interfere with each 
other. 

The derivation of the average cross sections just 
given is plausible but not proper—both the assump
tions (B) and (D) are not obviously the result of any 
theory. The factorization of the cross section as in (5) 
holds near the peak of an isolated resonance as can be 
shown with the Breit-Wigner formula: I t does not 
hold, in general, for interfering resonances. The situa
tions with which we are dealing involve overlapping 
compound levels whose lifetime is comparable to the 
transit time of a nucleon across the nucleus. I t is there
fore of some importance to establish the statistical for
mulas with a proper theory of nuclear reactions. 

The theory of nuclear reactions begins with the 
collision matrix UCC' in terms of which the reaction 
cross section aaar (integrated over all angles and 
averaged over channel spins and orbital angular mo
menta) may be written 

T (2J+1) 

ka
2 (2 /+l ) (2 i+l ) 

5cc>-Uc (10) 

Equation (10) itself does not involve any nuclear re
action theory—it involves only the geometrical con
siderations arising in the connection between the cross 
section and the asymptotic form of the wave function. 
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The nuclear theory enters into the collision matrix. In 
the Wigner and Eisenbud theory4 the collision matrix 
is written2 

tfCfl, = **(°^°cOpcc,+; £xx' r x ^ T v ^ M x v ] , (11) 

where 
(rxc)

1^^(2Pc)
1/27Xc, (12) 

— L c " ( 5 ' c " + i i > c " ) 7 X c " 7 X ' c " . (13 ) 

The Oc are potential scattering phase shifts (unim
portant in reactions, C5*c'), the Y\c are partial widths 
which in turn are products of reduced widths, 7xc

2, and 
penetration factors, 2PC. The shift functions Sc depend 
on the wave functions of the channels c and on the 
boundary condition numbers bc at each channel radius 
which define the compound states. The most natural 
choice of the boundary condition numbers is that which 
makes each shift function vanish at the energy E of the 
reactions.2 The E\ are the characteristic energies of the 
compound states. Retention of only one compound 
state in (11) leads at once to the familiar Breit-Wigner 
formula. For overlapping levels we must take many 
levels into account. 

For the theory of average cross sections a useful 
approximation to (11) is obtained by expanding the 
level matrix A about its diagonal. The result for UCC' 
is [apart from phases unnecessary for | Ucc> |2 as in (10)] 

rxc1/2rxc1/2 

tfcc^Ex , (14) 
E x - E - ( i / 2 ) r x 

where we have retained only the first term in the ex
pansion of A about its diagonal value. This approxi
mation is valid if, for each channel, the following con
dition holds: 

27r<rXc>/ZKn«l, (15) 

where (T\c) is the average level width and DJIL the 
average spacing of the compound states whose total 
angular momentum and parity are JU. The conditions 
under which (15) applies are discussed below. The 
result (14) makes the collision matrix a simple sum of 
Breit-Wigner amplitudes. 

In order to obtain average cross sections with (14) 
and (10), we must obtain the average over a suitable 
energy interval of 

\ucc,\
2=±PcPc>i:w 

7Xc7Xc'7x'cYx'c' 
X . (16) 

[ £ x - £ ~ (*/2)rxXEv-£+(i /2)rX ' ] 
If we take the average of (16) over an energy interval 

8 containing many levels (if the total width, T x = S c Txc, 
4 E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947). See 

also E. P. Wigner, ibid. 70, 15 (1946); 70, 606 (1946), T. Teich-
mann, ibid. 77, 506 (1950); 83, 141 (1952), T. Teichmann and 
E. P. Wigner, ibid. 87, 123 (1952). 

is larger than the level spacing we assume 8^>T\), then 
we can ignore the terms in the double sum from levels 
outside 8 because the denominators make such contri
butions small. We also assume that the energy interval 
8 is small enough that the penetrabilities Pc and Pc> 
may be regarded as constants. The average of (16) is 
then found by restricting X and X' to the levels in 8, 
multiplying (16) by 5-1 and integrating over energy E 
from — oo to + oo. The integral is evaluated by com
pleting a contour in the upper half of the complex plane, 
and the result is 2iri times the sum of the residues of 
(16) at the poles located at E=E\>+ (z/2)Tv 

4xPcPc> 
/ I 77 , | 2 \ = 
\ I u Ccf \ / a v 

8 
7xc7xC'7x'c7x'C' ( r x + I V ) 

XEXX< in 5 . (17) 

CEx-£x')2+i(rx+iY)2 

For each term in the sum over X of (17) there will be 
about (T\)/D contributions from the X' sum, and there
fore about 8(T\)/D2 pairs altogether. The reduced width 
amplitudes yxc are assumed to have random sign fluctua
tions so that the contribution from the terms with XT^X' 
will be proportional to the square root, (8(T\)/D2)112, 
of the number of pairs while the corresponding con
tribution from the diagonal terms X=X' is 8/D. With 
£S>Tx we can neglect the cross product terms yielding 

(| Uc I *)„= (S/#)8(VS)PciV[<7xc2X7xc<2>/<rx] (18) 
= 1 c l c'j L^ic" J- c" j 

where the transmission functions Tc are related to the 
average resonance parameters by 

rc^27r<rXc)/ZKn (19) 
= ^KPCSC , 

in which sc is the strength function. 
Use of (19) in (11) yields at once the formula (1) 

for average cross sections except that the transmission 
functions now are given in terms of average resonance 
parameters rather than optical-model phase shifts. 
The correspondence between the behavior of nuclear 
transmission functions and those of the optical model 
is very close2,5 and forms one of the principal justifica
tions of the optical model. 

The derivation of the average cross sections of the 
compound nucleus depends on the approximations (15) 
and on the assumption of random signs for the yxc 
The random sign approximation is also essential for the 
theory of fluctuations (see preceding paper1). The 
approximations (15) can be shown to be generally 
almost adequate for nucleon channels but completely 
inadequate for heavy ions and alpha particles. For 
most of the channels which we are considering the 
optical-model transmission functions are very close to 

6 A. M. Lane, R. G. Thomas, and E. P. Wigner, Phys. Rev. 98, 
693 (1955). 
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unity so that (15) does not hold. In the absence of a 
proper theory for the general case we discuss the simple 
case of one open channel. The results of this special 
case will be used for our more general connection be
tween resonance parameters and optical-model trans
mission functions. 

For the complex square well2 of radius R the (ft func
tion may be written 

(Sii=Zv(P/ntR^)/(Ev-E-iW) (20) 
= (Rf°+iirsi, 

where the energies Ev belong to the single-particle levels 
in the real part of the complex square well and W is the 
imaginary part of the well depth. The corresponding 
transmission functions are found (from the absorption 
cross section) to be 

Tl=4irPlsl/£(l-Sl(Rl<»+7rPiSly 

+ (P;GV°+7rW], (21) 

where the penetrabilities Pi and the shift functions Si 
are the ones discussed above. The modifications of (21) 
caused by the diffuse-edge of the nuclear complex well 
are rather straightforward modifications2 of Pi and Si. 
If si is taken as the strength function—as seems appro
priate from (20)—then (21) already gives a generaliza
tion of (19) which reduces to (19) when Ti is small. 

The total cross section or is linear in the diagonal 
elements of the collision matrix—a result following 
from flux conservation. In the case of only one channel 
the collision function has poles only in the lower half-
plane. We may then follow the suggestion of Thomas6 

and average the cross section (or, equivalently, the 
collision function, U, since the cross section is linear 
in U) by moving the averaging interval 8 up into the 
complex plane by an amount e 

5»€»£>, (22) 

where D is the average spacing of the compound levels. 
The new average, with E replaced by E+i e, is equal 
to the old because the new interval can be connected 
to the old forming a closed contour containing no 
poles: If K>e holds, the integral over the two connect
ing ends is negligible. 

When E is replaced by E+ie (with e^>D as assumed), 
then neither the collision function nor the (ft function 
have strong fluctuations. The (ft function of the nuclear 
reaction theory is then 

(R(£+*eHExYxy(£x-£-*e) 

= / (E^-E-U)-HE^ (23) 

= fir +P / (Ei-EyUEi, 
D J D 

6R. G. Thomas, Phys. Rev. 97, 224 (1955). 

where P stands for the principal value of the improper 
integral. The important point is that the average (ft 
function, (23), has a real and imaginary part connected 
in exactly the same way as the (ft function (20) of the 
complex potential well. Moreover, the imaginary part 
of (23) is iws, where s is the strength function and the s 
of (20) has the giant resonance behavior expected of 
nuclear strength functions.5 Therefore, the average 
total cross section of the nucleus agrees with the total 
cross section of the complex potential well even when 
the transmission function approaches unity. For the 
one-channel case, then, the higher order corrections (in 
4xiVz) of (21) are expected to correspond to those of 
the nucleus. If we choose the boundary condition 
numbers so that Si=0, and if the complex potential 
well has a large W such that d&f is small, then (21) 
reduces to the approximate formula [second step of (2)] 
used in this paper to connect optical-model transmission 
functions to nuclear strength functions.3 

For the case of many channels, the reaction cross 
sections (10) are not linear in the collision matrix com
ponents and we cannot displace the averaging interval 
without crossing poles. For this case no proper theory 
of average cross sections has been given which applies 
when the transmission functions approach unity. Be
cause the statistical theory in the form (1) applies in 
the case of many channels and all 2V<Cl, and in the 
case of one channel with arbitrary Tc, it is not unreason
able to expect that it will also be found to apply in the 
more general case of many channels with arbitrary Tc. 
The more general case applies to the heavy-ion reactions 
which we are discussing, and it is found that the for
mulas of the statistical theory agree very well with the 
observed average cross sections. 

3. EFFECT OF FINITE AVERAGING INTERVAL 

An estimate of the energy interval required to obtain 
true average cross sections can be made by calculating 
the fluctuations about the average. The fluctuations of 
the compound-nucleus cross sections in the case of 
overlapping levels (TC$>D) as discussed in the accom
panying paper arise from the reaction theory through 
the same random sign fluctuations of the I\c

1/2 used in 
the derivation of average cross sections. Thus, (14) is 
a complex amplitude 

rxc1 / 2rX C'1 / 2 

UCc'~Yl-K =Ucc> + iVcc' , (24) 
Ex-E-iTx/2 

whose average square, ((^CC'2)av+ (*W2)av) was evalu
ated by (18). If the numerators of (24) have random 
signs and if ucct and vccr then have Gaussian distribu
tions about the average value zero, 

( « c c ' ) a v = (flcc'}av= 0 , ( 2 5 ) 

then both (wCC'2)av and (flCC'2)av have chi-squared dis
tributions with one degree of freedom. To find the 
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probability distribution of (| Ucc> | 2}av we must find the 
relative values of (wCC'2)av and (vcc>

2)av. From (24) we 
have 

rxc^Tv^Txc^rvc'^Txrv 

C(£x-£)2+irx
2I(JBv-£)2+irv2] 

(26) 

To obtain the average of (26) over an energy interval 
5 (^>>Fx, D) we again restrict the sum in (26) to the 
levels in 5, multiply by 5~x and integrate over E\ from 
— oo to + °°. As in (17) the contribution of the diagonal 
terms (X=X') in (26) to the integral is larger than the 
contribution of the cross-product terms (X^X'). The 
former can be integrated directly yielding 

(vcc>2U= («//>)(«•/«) (rxcrxc/Tx) 
= K I tfoo'|2>av (27 ) 

= \UCC/ / a v . 

The equality of (flCC'2)av and (ucc>
2)av means that 

(| UCC' 12)av, which is the sum of the two, has a chi-
squared distribution with two degrees of freedom. 

I t should be noted that if the total level width Tx 
is not much larger than the average level spacing, then 
the fluctuations of ucc> and vcc

f are not independent and 
the distribution of | UCC' \2 becomes closer to that of a 
chi-squared distribution with one degree of freedom. 
The study of the fluctuations of the C12(C12,a)Ne20 

reactions in the accompanying paper1 showed no 
evidence of such an effect. 

The averaging interval AE required to obtain true 
average cross sections must be considerably larger than 
the full width Fx of the compound levels. In the dis
cussion of fluctuations in the accompanying paper1 the 
ratio AE/Y\ was referred to as the sample size S. The 
sample size S together with the basic distribution law 
(an exponential distribution, i.e., a chi-squared dis
tribution with two degrees of freedom) of the fluctuating 
cross sections permits a quantitative estimate of the 
effect of the finite size of the averaging interval. 

To distinguish finite-sample averages of cross sec
tions from true averages, we shall write the former as 
(a)s and the latter as a (or, equivalently, (<r)) and we 
use the generic symbol a to denote either acc

f or dvCC'/<Kl. 
In the case of overlapping levels each fluctuating cross 
section may be written as 

^ = E i Q * i , (28) 

where the Xj is a fluctuating quantity whose proba
bility distribution P(%j) is 

P(*y) = « -* , (29) 

and the Q are weight coefficients calculated from the 
statistical theory of average cross sections. For ex
ample, if <r is the integrated cross section <rCC', then the 
index j of (28) runs over all combinations of the quan
tum numbers JHslsfV and the value of Cj for each 
value of j is given by the corresponding term on the 

right side of (1). If a is the differential cross section of 
the C12(C12,a)Ne20 reaction to the ground state of Ne20, 
then the index j contains only one term and the corre
sponding value of Cj is given by the right-hand side 
of (3). For more general differential cross sections, the 
index j runs over all combinations of s, ms, sf, and ws/, 
as discussed in Ref. 1, and the value of Cy is then given 
by Eq. (16) of Ref. 1. 

The sample average of a is 

(<r)a=(X/S)T.UT.iCfltti, (30) 

where each Xi3- has the exponential distribution (29). 
The corresponding true averages of <r are then 

«*>*>=ff=E/Q, (31) 

in agreement with (1) and/or (3). 
The distribution of (a)s rapidly approaches a normal 

distribution as S becomes large. For example, if the 
sum over j contains only one term Cj=C, then (<r)s is 
a chi-squared distribution of 25 degrees of freedom. 
This distribution has its maximum at (S—1)C/S, al
though the true average value of (<r)s is still C More
over, if we choose a probable error es so that the proba
bility of finding {<r)s/& within l i e s is 50%, then 

es^d8S~V\ (32) 

where ^=0.6745 (the value for a normal distribution) 
and Jio= 0.6714, J50= 0.6739. Thus, for even fairly 
small values of the sample size, the tendency toward 
the normal distribution enables one to use the usual 
estimate of the probable error. 

For cross sections, (28) with more than one weight 
coefficient Cy, we estimate the probable error of (<r)s 
by means of the second moment of the distribution 
about its mean value (31). The result is 

€^0.67455"1/2(Ei Q2)1/2/(Ey C,). (33) 

The probable errors quoted in the remainder of the 
paper are based on (33) with weight coefficients ob
tained from the calculated average cross sections and 
with sample size values from the fluctuation analysis.1 

4. CALCULATION OF AVERAGE CROSS SECTIONS 
FOR THE C12(C12,a)Ne20 REACTION 

The C12+C12 reactions involve identical bosons with 
zero spin. These facts simplify the average cross section 
formula above: Because of the zero spin, the incident 
channel spin is zero so that / and / Qn (1) and (3)] are 
equal; because of the identity of the C12 nuclei all odd 
values of / are excluded, II is positive, and (1) and (3) 
must each be multiplied by a factor of 2. The resulting 
form of (1) is 

2TT E.'i'ZVfcO 
*„•=— He,enj(2J+l)Tl=j(c) , (34) 

& Zc»Tlf,(c") 

with similar modifications in the average angular dis-
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1 

-14 
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-10 
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' 4 0 ,6

+Be8 

- 2 

8 
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I I 
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F ,9+H' + H«4 
FIG. 1. The energy levels 

available for the decay of com
pound states of Mg24 at an 
excitation energy of ~25 MeV. 
The computed cross sections 
for most of the final states 
shown are given in Table II. 

tribution (3). The detailed calculations given below 
will show further simplification in that the cross sec
tions which we are considering involve principally two 
values of Z. 

To make exact numerical calculations with the com
pound-nucleus theory requires knowledge of all the 
reaction channels which are open to a Mg24 compound 
nucleus at the appropriate excitation energy (^25 
MeV in our case). Figure 1 shows the various final 
states to which the compound levels of Mg24 can decay 
for energies appropriate to the reaction under discus
sion. Fortunately, the spins and parities of most of the 
levels of Ne20 below about 12 MeV have recently be
come known.7 The properties of most of the Na23 and 
Mg23 levels (involved in proton and neutron emission 
on Fig. 1) are presently not known, but it happens that 
these levels do not play a dominant role in the 

TABLE I. The optical-model parameters employed in the sta
tistical theory calculations. The optical potential is 
V(r) = ( - Vo+coE-iWo) (l+e^Ro)iaji 

-i(Wg+CiE)e-(r-™2lb<i-\-VC) 

where Vc is the Coulomb potential and E the center-of-mass 
energy. The parameters were obtained from fits to elastic-
scattering data for each of the projectiles. 

System 

C12+C12 

Ne20-!-^ 
Na23-f-/> 
Mg»+» 
016-fBe8 

Vo 
MeV 

50 
45 
55 
51 
50 

i?o 
F 

5.77 
5.0 
3.56 
3.56 
5.77 

Wo 
MeV 

4.0 
10 

4.0 

a 
F 

0.4 
0.5 
0.5 
0.5 
0.4 

w„ 
MeV 

4.0 
4.0 

b 
F 

0.98 
0.98 

Co 

0.5 
0.5 

Ci 

0.5 
0.5 

7 The levels of Ne20 used in the calculation include those in 
standard compilations and, in addition, a few others recently 
found by the Chalk River tandem group: J. A. Kuehner and 
J. D. Pearson, Can. J. Phys. 42, 477 (1964); J. A. Kuehner and 
E. Almqvist, Bull. Am. Phys. Soc. 9, 430 (1964); A. E. Litherland, 
C. Broude, and J. D. Pearson, ibM. 9, 430 (1964). The new levels 
fill in gaps in the low-lying rotational bands of Ne20. 

C12(C12,a)Ne20 reaction even though the nucleon emis
sion channels far outnumber the levels of Ne20 avail
able to a decay. The feature of the present problem 
which overrides other considerations is the large amount 
of angular momentum imparted to the compound sys
tem by the C12+C12 incident channel. The a particles 
carry off the angular momentum much more readily 
than nucleons. The relative unimportance of the nu
cleon-emission channels will be demonstrated by the 
statistical-theory calculations given below. The remain
ing open channels have, for the most part, known spins 
and parities enabling a proper statistical-theory calcu
lation to be made. 

To show the relative importance of nucleon- and 
alpha-particle channels in the decay of the Mg24 system, 
we give in Table II, the result of a statistical theory 
calculation carried out with (1) using all the final 
states shown on Fig. 1. For each final state the trans
mission functions were calculated from an optical model 
using parameters derived from fits to elastic-scattering 
data.8 The optical-model parameters used in the calcu
lation are given in Table I; the main results are quite 
insensitive to the optical-model parameters employed. 
The cross sections shown on the table (and in other 
tables below) refer to an energy of 11.4 MeV. Most of 
the partial cross sections are only moderately energy-
dependent, so that the tabulated values can be taken 
as averages for the energy interval which we are 
considering. 

The main difficulty with the statistical theory calcula
tion of Table II is the lack of knowledge of the possible 
final states involved in nucleon emission. The estimates 
made in Table I and Fig. 1 about the number of such 
states is not subject to great uncertainty if one employs 

8 J. A. Kuehner and E. Almqvist, in Proceedings of the Third 
Conference on Reactions Between Complex Nuclei, Asilomar Cali

fornia, edited by A. Ghiroso, R. M. Diamond, and H. E. Conzett 
(University of California Press, Berkeley, 1963); Phys. Rev. 134, 
B1229 (1964). 
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TABLE II. Results of the statistical theory calculation for the reaction cross sections of the C12+C12 system at a center-of-mass 
energy of 11.4 MeV. The first column gives the residual nucleus and its state of excitation, the second the spin and parity of each state, 
and the third the angle-integrated cross section acc> in mb for each final state. Bracketed energies and spins and parities refer to esti
mated values based on known level densities and spin distributions. For Na23 all the levels above 4.0 MeV should have bracketed energies 
and spins and parities. The properties of the levels of Mg23 are taken to be the same as those of the mirror nucleus Na23. Levels suffi
ciently far below the Coulomb barrier (see Fig. 1) so that their cross sections are negligible are not listed in the table. 

Residual 
state £* 
in MeV 

C 1 2 

ground 
4.43 

Be8 

ground 
2.90 

Ne20 

ground 
1.63 
4.25 
4.97 
5.63 
5.80 
6.75 
7.02 
7.19 
7.23 
7.46 
7.86 
8.52 
8.60 
8.70 
8.80 
8.84 
8.91 
9.10 
9.18 
9.58 

(10.30) 
(10.50) 
(10.50) 
(10.50) 
(10.50) 
(10.50) 
(10.50) 
(10.50) 
11.08 
11.16 
11.30 
11.39 
11.66 
11.84 
12.16 
12.24 
12.48 
13.06 
13.10 

/n 

0 + 
2 + 

0 + 
2 + 

0 + 
2 + 
4 + 
2 -
3 -
1 -
0 + 
4 -
3 -
0 + 
2 + 
2 + 
5 -
0 + 
1 -
2 + 
6 + 
1 -
4 + 
3 -
2 + 

(2+) 
(0+) 
(1+) 
(2+) 
(3+) 
(4+) 
( 2 - ) 
( 4 - ) 
(0+) 
( 0 - ) 
(1+) 
( 1 - ) 
(2+) 
( 2 - ) 
(3+) 
( 3 - ) 
(4+) 
( 4 - ) 
8 + 

<Tcc' 

mb 

13.5 
2.6 

Sum= 16.1 

13.2 
11.4 

Sum= 24.6 

16.7 
41.2 
50.9 
15.4 
33.3 
12.9 
4.0 

24.0 
23.6 
3.5 

13.4 
11.8 
33.6 

2.2 
4.7 
8.5 

41.4 
4.3 

20.4 
12.2 
6.2 
4.4 
1.1 
0.8 
3.9 
3.3 

11.4 
1.7 
5.4 
0.7 
0.0 
0.5 
1.1 
1.6 
0.6 
0.6 
1.2 
1.5 
0.2 
2.7 

Sum = 426.8 

Residual 
state E* 
in MeV 

Na23 

ground 
0.44 
2.08 
2.39 
2.64 
2.70 
2.98 
3.68 
3.85 
3.92 
4.30 
4.30 
4.30 
4.30 
4.30 
4.30 
4.50 
4.50 
5.50 
5.50 
5.80 
5.80 
5.80 
5.80 
5.80 
5.80 
6.20 
6.20 
6.20 
6.20 
6.80 
6.80 
6.80 
6.80 
6.80 
6.80 
7.60 
7.60 
7.60 
7.60 
7.60 
7.60 
7.70 
7.70 
7.70 
7.70 
7.70 
7.70 
8.30 
8.30 
8.30 
8.30 

m 

§ + 

i+ 
-1+ 
(i+) 
(!+) 
(-!+) 
(!+) 
(-!-) 
(*- ) 
(f+) 

3 
2 

f+ 
7 
2 ~ ~ 

2^r 
5 
2 

i+ 
i+ 
i 
2 
1 
2 — 

H-
1+ 
5 
2 

i+ 
3 
2 

i+ 
7 
2 
1 
2" 

!+ 
i+ 
9 
2 

2 T 

5 
2" 

1+ 
3 
2" 
£4-
2 T 7 
2 
3 
2 
5 1 
2 1 
7 
2~~ 

1+ 
5 
2" 

i+ 
i+ 
9 
2 

11/2+ 
i 
2 ~ " 
^4-
2 T 

1 1 / 2 -

f+ 
5 
2 

1+ 
3 
2 

O'cc' 

mb 

2.9 
4.1 
6.2 
0.8 
2.7 
1.8 
7.4 
3.1 
6.3 
1.5 
2.9 
2.0 
8.6 
1.4 
5.9 
4.0 
0.6 
1.5 
1.3 
0.5 
1.1 
4.3 
3.1 
2.2 
1.5 
6.2 
1.1 
4.0 
0.5 

11.7 
0.9 
3.1 
2.6 
1.6 
1.3 
4.4 
1.3 
1.1 
3.3 
0.8 
2.3 
2.1 
0.4 
6.7 
6.7 
0.7 
2.8 
9.9 
0.7 
1.8 
1.8 
1.0 

Residual 
state E* 
in MeV 

Na23 

8.30 
8.30 
8.50 
8.50 
8.80 
8.80 
8.80 
8.80 
8.80 
8.80 
9.00 
9.00 
9.00 
9.00 
9.00 
9.00 
9.04 
9.08 
9.12 
9.16 
9.20 
9.24 
9.28 
9.32 
9.36 
9.40 
9.44 
9.48 
9.52 
9.56 
9.60 
9.64 
9.68 
9.72 
9.76 
9.80 
9.84 
9.88 
9.92 
9.96 

10.00 
10.04 
10.08 
10.12 
10.16 
10.20 
10.24 
10.28 
10.32 
10.36 
10.40 
10.44 

m 

1+ 
7 
2 ~ ~ 
1 
2 

i+ 
2~\~ 
9 

11/2+ 

2 1 , 

1 1 / 2 -
3 
2 ~ 

4+ 
7 
2 ~ " 

i+ 
5 
2 ~ ~ 

1+ 
i+ 
5 
2~~ 

i+ 
3 
2~ 

1 3 / 2 -

f+ 
7 
2 — 
1 
2 " ~ 

1+ 
i+ 
9 
2~ 

i+ 
5 
2~ 

i+ 
1-
i+ 
7 
2~~ 
3 
2 ~~ 

!+ 7 
2 

i+ 
5 
2~~ 

i+ 
i+ 
9 
2 

11/2+ 
13/2+ 

1 
2 

!+ 
11/2— 

t+ 
5 
2 

1+ 
3 
2 

4+ 
7 
2 ~ ~ 

O'cc' 

mb 

0.9 
2.5 
0.6 
0.3 
0.3 
4.3 
4.9 
0.5 
2.0 
6.3 
0.8 
0.7 
1.8 
0.5 
1.4 
1.4 
0.5 
1.3 
1.4 
0.8 

11.2 
0.6 
1.6 
0.4 
1.6 
0.2 
3.2 
0.5 
1.1 
1.1 
0.6 
0.5 
1.3 
0.6 
0.5 
1.2 
0.4 
0.9 
1.0 
0.2 
2.3 
2.9 
3.7 
0.3 
1.1 
2.9 
0.3 
0.7 
0.8 
0.4 
0.4 
0.8 
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TABLE II {Continued) 

Residual 
state E* 
in MeV 

Na2* 
10.48 
10.52 
10.56 
10.60 
10.64 
10.68 
10.72 
10.76 
10.80 
10.84 
10.88 
10.92 
10.96 
11.00 

Mg23 

ground 
0.44 
2.08 
2.39 
2.64 
2.70 
2.98 
3.68 

/n 

i 
2 — 

i+ 
1+ 
9 
2 

H/2+ 
i 
2 
1+ 

11/2— 

I -
i+ 
7 
2 
.3_L_ 
2 T ^ 
5 
2 

}+ 
Sum = 

t+ 
4+ 
i+ 
i+ 
1+ 
i+ 
1+ 
f-

C c c ' 

mb 

0.2 
0.1 
0.1 
1.4 
2.1 
0.2 
0.7 
1.7 
0.2 
0.3 
0.5 
0.2 
0.3 
0.5 

= 244.7 

2.0 
2.7 
3.6 
0.5 
1.5 
1.1 
4.0 
2.5 

Residual 
state £* 
in MeV 

Mg23 

3.85 
3.92 
4.30 
4.30 
4.30 
4.30 
4.30 
4.30 
4.50 
4.50 
5.50 
5.50 
5.80 
5.80 
5.80 
5.80 
5.80 
5.80 
6.20 
6.20 
6.20 
6.20 
6.80 
6.80 
6.80 

JU 

s 
2 — 

1+ 
I -
§+ 
i~ 
*+ 5 
2 ~ 

i+ 
i+ 
1 
2 
1 
2 

i+ 
§+ 
5 
2 

}+ 
3 
2 

1+ 
7 
2 

i-
1+ 
i+ 
9 _ 
2 

f+ 
5 
2 " ~ 

i+ 

<7cc' 

mb 

4.9 
0.8 
2.2 
1.0 
6.4 
0.7 
4.5 
1.9 
0.3 
1.2 
0.9 
0.2 
0.4 
2.6 
1.1 
1.4 
0.5 
3.7 
0.7 
1.2 
0.2 
6.6 
0.2 
1.9 
0.6 

Residual 
state £* 
in MeV 

Mg23 

6.80 
6.80 
6.80 
7.60 
7.60 
7.60 
7.60 
7.60 
7.60 
7.70 
7.70 
7.70 
7.70 
7.70 
7.70 
8.30 
8.30 
8.30 
8.30 
8.30 
8.30 
8.50 
8.50 

JU 

3 
2 

§+ 
7 
2~ 
3 
2~*" 

i+ 
7 
2 

1+ 
5 
2 

i+ 
i+ 
9 
2 — 

11/2+ 
1 
2 

&4-
2 T 11/2 — 

1+ 
5 
2~~ 

1+ 
3 
2 ~ 

f+ 
7 
2 
1 
2 —" 

J + 

0"cc' 

mb 

1.1 
0.3 
2.5 
1.1 
0.2 
2.3 
0.1 
1.8 
0.3 
0.1 
5.1 
1.0 
0.7 
0.3 
7.3 
0.1 
1.6 
0.2 
1.0 
0.1 
2.1 
0.4 
0.0 

Sum= 93.4 

the information on level densities available from the 
F19+a and Ne22+^ reactions (allowing in each case for 
missed levels of high spin). The distribution of these 
levels in spin and parity, as given in the table, is 
plausible. The calculations show that the only levels 
in Mg23 and Na23 which are fed appreciably are those of 
very high spin. The distribution of the levels in spin I 
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FIG. 2. Comparison of experimental and theoretical absorption 
cross sections of the C12+C12 system as a function of the center-
of-mass bombarding energy. 

was assumed to be proportional to 

(2 /+l )exp[- / ( /+ l ) /2<r 2 ] 

with a spin cutoff parameter9 a=3.5. In addition the 
lowest level of spin I was assumed to be at an energy 
of 0 .20[ / ( /+ l ) - /o( /o+l ) ] , where I0 is the spin of 
the ground state of Na23(/0

:=f). Without this latter 
assumption the cross sections to a small number of 
low-lying high-spin levels of Na23 and Mg23 are so large 

TABLE III. The calculated absorption cross section and the 
branching ratios for each value of JU of the reactions of the 
C12+C12 system at 11.4-MeV bombarding energy of the center-
of-mass. 

m 
0 + 
2 + 
4 + 
6 + 
8 + 

10+ 
12+ 

ffvn(abs)/ 
2jno"jn(abS; 

i n % 

2.3 
11.6 
21.1 
30.2 
28.6 
5.9 
0.3 

Alphas 

30.2 
26.9 
32.0 
46.7 
74.9 
91.7 
97.9 

Branching ratios in % 
Protons Neutrons 

41.7 
45.9 
44.0 
35.5 
12.5 
0.7 
0 

21.6 
23.5 
20.4 
12.0 
1.0 
0 
0 

Be8 

2.5 
1.6 
1.6 
2.6 
4.9 
3.3 
0.8 

C12 

4.0 
2.1 
2.0 
3.2 
6.7 
4.2 
1.3 

9 See Sec. 7 below for similar estimates of the spin cutoff 
parameter. 
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that the probability of nucleon emission is doubled. 
Such a large amount of nucleon emission is not in 
accord with experiment: The assumptions made in 
connection with Table II yield the prediction that 
neutrons and protons together contribute about 40% 
of the total yield from the compound nucleus: The 
total production of alpha particles is predicted to be 
approximately equal to the sum of proton and neutron 
production. This result of the calculation is in reason
able accord with the experimental results.10 

The low-emission probability of nucleons to low-spin 
states arises from the high angular momentum im
parted to the compound system by the C12+C12 pair. 
To show this, Table III gives the fraction of the C12+C12 

absorption cross section feeding each value of JIl as 
well as the corresponding branching ratios for each 
JU for each pair of reaction products. For the low 
values of JU, which are not important in our problem, 
the nucleon channels predominate in the decay of the 
compound system, while for the high values of JU, 
alpha particles and heavy ions dominate the decay. The 
variation of branching ratios with JU clearly demon
strates the need for a theory which considers con
servation of J and II. 

5. COMPARISON OF DATA AND THEORY FOR 
AVERAGE CROSS SECTIONS OF THE 

C12(C12,a)Ne20 REACTIONS 

The experiments yielding the average cross-section 
measurements to be compared with the calculations of 

T—f—i—r—i—I—i—r-i—f-T 

ENERGY (M«V QM.) 

FIG. 3. The partial absorption cross sections for C12+C12 as a 
function of the center-of-mass bombarding energy calculated 
from optical-model transmission functions Ti for each partial 
wave I. The optical-model parameters are given in Table I and 
the total absorption cross section in Fig. 2. 

10 E. Almqvist, J. A. Kuehner, D. McPherson, E. W. Vogt, and 
J. D. Prentice, in Proceedings of the Third Conference on Reactions 
between Complex Nuclei, Asilomar California, edited by A. Ghiorso, 
R. M. Diamond, and H. E. Conzett (University of California 
Press, Berkeley, 1963); E. Almqvist, D. A. Bromley, and J. A. 
Kuehner, in Proceedings of Second Conference on Reactions between 
Complex Nuclei, 1960, edited by A. Zucker, E. Halbert, and F. T. 
Howard (John Wiley & Sons, Inc., New York, 1960), p. 282. 

TABLE IV. Experimental and calculated values of angle-
integrated cross sections for the C12(C12,Q;)Ne20 reaction. «o refers 
to emitted alpha particles leaving Ne20 in its ground state, and a\ 
to Ne20 in its first excited state. The subscript 8 on <ru(ao) refers 
to the / n = 8 + part of the <r(ao) cross section (Ref. 1). The errors 
in the experimental cross sections are estimated probable errors; 
the errors in the calculated values are sample-size errors estimated 
by means of Eq. (33). 

Exp. Calc. 
(mb) (mb) 

<r(ao) 19.2 (±4) 16.0±1.5 
os(a0) 10.5(±2) 8.6dbl.8 
<r(ai) 63.0(±14) 39.3±2.1 

the preceding section were discussed in the accompany
ing paper.1 

The total absorption cross section of the C12+C12 

system is shown on Fig. 2 as a function of the center-
of-mass energy. The optical-model calculations shown 
on the figure agree well with the data and are a check 
on the C12+C12 transmission functions used in the sta
tistical theory calculations. Figure 3 shows, at each 
energy, the contributions of various partial waves to 
the absorption cross section. (Cf. second column of 
Table III.) Similarly, Fig. 4 gives the contribution of 
various JIl to the C12(C12,«0)Ne20 reaction. The con
tributions of 6+ and 8+ states gain in importance be
cause of the behavior of the branching ratios discussed 
above. 

The experimental and calculated values of the inte
grated cross section are compared in Table IV. The 
table lists the mean-integrated cross sections11 for the 

FIG. 4. The calculated cross sections *i of the C12(C12,a)Ne20 

reaction for alpha particles to the ground state of Ne20 as a func
tion of the center-of-mass bombarding energy. The statistical 
theory calculation is that described in connection with Table II. 

11 The amount of O16 contaminant in the C12 target is not 
sufficient to have an appreciable effect on the measured cross 
section. The amount of contaminant can be ascertained by the 
strength of the observed C12(016,o:)Mg24 reaction for which a 
small ground-state peak is seen. The C12(C12,ai)Ne20 reaction is at 
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8a (CM.) 

FIG. 5. The experimental and calculated values of the average 
differential cross section for the C12(C12,ao)Ne20 reaction as a 
function of the center-of-mass angle dai of the emitted alpha par
ticles. The experimental values are the solid points which have an 
absolute error of ±20%. The statistical theory curve (solid line) 
has a finite sample error at each angle of about ± 1 5 % [~0.67 S~112 

with S = 22"]. Neither the experimental points nor the theoretical 
curve have been multiplied by an arbitrary normalization factor. 
The angular distribution (sin0a)

-1 applicable in the limit of large 
angular momentum is also shown. 

ground state and the first excited state and the partial 
cross section to the ground state for 7 = 8 states only. 
The experimental values of the average total cross sec
tions were obtained by averaging over the interval 
10.15-12.8 MeV while the as cross sections were 
averaged over the smaller energy interval of 10.15-

11.8 MeV. The effect of the finite size of the interval 
on the fluctuations was discussed in Ref. 1. The errors 
quoted in the table (with the theoretical cross sections) 
correspond to the probable error estimated from (33), 
with a sample size1 5 = 2 2 , and with weight coefficients 
calculated as a by-product of the average cross-section 
calculations. 

The observed average angular distributions are com
pared to the statistical theory estimates made by 
means of (3) on Figs. 5 and 6. Neither the data nor the 
calculations have been renormalized on Figs. 5 and 6 
so that the good agreement in both shape and magni
tude is of interest. Figure 5 shows how the angular dis
tributions for alpha particles emitted to the ground 
state of Ne20 tend to approach the (sinfl)-1 behavior 
appropriate in the classical limit of large angular 
momentum.12 

Both the calculated shape and the calculated abso
lute magnitude of the cross section for alpha particles 
emitted to the ground state of Ne20 are in good agree
ment with the observations in spite of the fact that the 
condition (15) does not hold. In fact the agreement is 
comparable to that for average cross sections involving 
only nucleons.13 Since the condition (15) holds for 
nucleon reactions and not for heavy ions the present 
results suggest that the usual statistical theory is 
applicable even for cases for which the transmission 
functions approach unity. (Figure 5 and Table IV.) The 
corresponding comparison for the first excited state 
(Table IV and Fig. 6) does not yield quite such good 
agreement. 
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FIG. 6. The experimental and calculated values of the average 
differential cross section for the C12(C12,cKi)Ne20 reaction (for 
alpha particles emitted to the first excited state of Ne20) as a 
function of the center-of-mass angle 6a of the emitted alpha par
ticles. The experimental values (crosses joined by an arbitrary 
broken line) have an error of ±20%. The statistical theory curve 
(solid line) has a sample error which varies with angle but is 
roughly ± 1 0 % for most angles. 

about the same energy as the C12(016,o;2)Mg24 and C12(016,a3)Mg24. 
The population of the latter states relative to the ground state 
has been calculated with the statistical theory. The resulting cor
rection reduces our a\ cross sections by a few percent. 

6. ESTIMATE OF LEVEL SPACINGS 
AND LEVEL WIDTHS 

The approximate connection between (Tc
JIl)/DJU 

and optical-model transmission functions was given by 
the second step of (2), based on (19). This connection 
enables us to calculate 

( r ^ n ) / ^ n = E c ( r / n ) / Z ) / n 7 (35) 

where (TJU) is the average total width and the sum 
runs over all open channels. By means of (2), the 
quantities ri were evaluated and summed using a G-20 
computer to give the results shown in Table V for 
center-of-mass bombarding energies of 6 and 11.4 MeV. 
The labels 711 are used in Eq. (35) to emphasize that 
the averages are computed separately for states of each 
spin and parity in Mg24. Also shown in the table are the 
experimental values14 of widths observed for spin-2 
and spin-4 states at 19.6 and 19.9 MeV, respectively, 
in Mg24 and the value for spin-8 levels obtained in the 
accompanying paper. 

12 V. E. Viola, H. M. Blann, T. D Thomas, in Proceedings of 
the Second Conference on Reactions between Complex'Nuclei', 1960, 
edited by A. Zucker, F. T. Howard, and E. C. Halbert (J. Wiley 
& Sons, Inc., New York, 1960), p. 224. 

13 E. W. Vogt, Phys. Letters 7, 61 (1963). 
14 E. Almqvist, D. A. Bromley, J. Kuehner, and B. Whalen, 

Phys. Rev. 130, 1140 (1963). 
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TABLE V. Calculated values of (T)/(D) and measured values of (r)eXp for various Jll at two excitation energies in Mg24. 
The sums 2 ; run over all exit channels available to the compound nucleus. 

ZiTi 
/i* = 19.9 MeV 

^in (T)/D <r>e: ^iTi 
E* = 25.3 MeV 

{Y)/D <r)c: 

0 
2 
4 
6 
8 
10 
12 
14 

11.43 
28.96 
19.01 
5.82 
1.49 
0.12 

19.30 
46.90 
31.50 
9.99 
2.03 
0.12 

3.12 
7.58 
5.09 
1.62 
0.33 
0.02 

130 keV 
100 keV 

72.5 
219 
177 
75.5 
21.4 
5.54 
0.71 
0.025 

147 
425 
349 
160 
43.3 
8.67 
0.79 
0.025 

23.8 
68.7 
56.4 
25.9 
7.00 
1.40 
0.13 
0.004 

120 keV 

The total width F0 of a Mg24 state at high excitation 
energies ( ^25 MeV) is made up of many partial widths 
Tc, each corresponding to one of the available decay 
channels shown on Fig. 1. Because the number of decay 
channels is so large, the total widths do not fluctuate 
appreciably, and we can equate each individual meas
ured total width to the average total width (T). 

r0=<r>=Ec<rc>. 

The statistical theory calculations of Tables I I and I I I 
showed that the nucleon channels, whose properties 
are not well known, are not expected to contribute a 
large fraction of the total width of a high-spin level 
in Mg24. The estimate of the level spacing D from the 
measured value of V by means of Eq. (35) then relies 
mainly on levels of known spin and parity. These esti
mates obtained from the data shown in Table V are 
17.2 and 19.6 keV for 2 + and 4 + levels at 19.9-MeV 
excitation in Mg24 and 17.1 keV for 8 + levels at 25.3-
MeV excitation energy. We now wish to normalize all 
the values of D to a single excitation energy in Mg24 

to see the effect of spin on the average level spacing and 
level width. 

The connection between level spacing and excitation 
energy in the Fermi gas model of the nucleus may be 
written according to Newton15: 

D(U) = consL4Gz1/2ftv1/2 (2U+3t)2 

Xexp[-2(7r2Gt//6)1 /2] , (36) 

where A is the atomic mass and G=GZ-\~GN is the 
density of single-particle orbits at the Fermi energy U; 
the subscripts Z and N refer to protons and neutrons, 
respectively. Effective values of the quantities G for 
various nuclei may be obtained from tabulations in 
papers by Newton15 and by Cameron.16 The equivalent 
energy U of the Fermi gas is obtained by subtracting 
from the nuclear excitation energy £*, the pairing cor
rection. The nuclear temperature t is given by 

t=(6U/ir"G)^=(U/a) 1/2 (37) 

which also defines the constant ' V in terms of G. We 

15 T. D. Newton, Can. J. Phys. 34, 804 (1956). 
16 A. G. W. Cameron, Can. J. Phys. 36, 1040 (1958). 

may then rewrite Eq. (36) 

D(U)--=Bl2U+3(U/a)^J expl-2(aU)1^, (38) 

where UB" and "a" are constants to be determined by 
experiment for any given nucleus. In taking the ratio 
of level spacings at two different excitation energies 
only the constant ua" is required. We shall determine 
values of this constant and the level spacing (i) from 
available experimental data on Mg24, and (ii) from the 
estimates on neighboring nuclei.15-17 For Mg24 the 
pairing correction is taken to be 4.58 MeV.16 

(i) The review article by Endt and Van der Leun 
lists 7 levels with properties 2 + between 11.38 and 13.09 
MeV out of 20 natural-parity levels for which assign
ments are given. Assuming that the same fraction of 
the ten unassigned levels also have properties 2 + , we 
obtain the average level spacing D2+ equal to 180 
(±70) keV at a mean excitation energy of 12.2 MeV. 
At 19.5 MeV our measurement gives D2+ as 17.2 keV. 
These results taken together yield the value 2.58 for 
the constant "a"; the corresponding value of the single-
particle level density G is 1.61 MeV""1. 

(ii) Following the prescription given by Newton,15 

a value of level density G is obtained. 

G= (0.03772) (JZ+]N+ 1M2 /3 (39) 

- 1 . 8 8 MeV"1. 

Here the effective j values for neutrons and protons 
based on the single-particle level ordering of Klinken-
berg18 are both taken to correspond15 to j equal to f. 
The quantity A is the atomic mass; the constant is 
based on a fit to the observed level densities at the 
neutron binding energy (i.e., near 6-8-MeV excitation) 
for 52 nuclei made by Newton.15 The corresponding 
value of " a " is computed to be 3.09 to be compared 
with 2.58 above. 

Cameron16 has estimated the single-particle orbit 
separations from the differences between the binding 
energies of successive nucleons and has given a tabula
tion of estimated values of the level density G for various 

17 M. L. Halbert and F. E. Durham, in Proceedings of the Third 
Conference on Reactions between Complex Nuclei, edited by A. 
Ghiorso, R. M. Diamond, and H. E. Conzett (University of 
California Press, Berkeley, 1963), p. 223. 

18 P. F. A. Klinkenberg, Rev. Mod. Phys. 26, 327 (1954). 
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TABLE VI. Observed and calculated values of the spacing Z>2 of 2 + states in Mg24 at various excitation energies E*. 

MeV 

12.2 
19.5 
25.0 

U 
MeV 

7.6 
14.9 
20.4 

D2 (obs) 
keV 

180 (±70) 
17.2 

(a) 

180e 

I7.2e 

3.60 

D2 (Calc.) keV 
(b) (c) 

248 125 
17.2e 17.2e 

3.0 5.66 

(d) 

326 
17.2e 

2.45 

Mean Z>2 

keV 

225 
I7.2e 

3.68 

a Equation (38) with both "a" and "JB" determined by fitting to two normalization points. 
b Newton's prescription (Ref. 15, see text). 
c Cameron's prescription (Ref. 16, see text). 
d Halbert and Durham's prescription (Ref. 17, see text). 
e These values were used for normalization. 

nuclei. The energy dependence of G which is implicit 
in Cameron's empirical procedure is not significant over 
the range of U of concern here; however, his expressions 
for nuclear temperature and level densities are not of 
the simple form of Eqs. (37) and (38) and the constants 
cannot be directly compared with those previously 
given. We therefore shall compare the resulting level 
spacings computed using his prescription with those 
obtained in other ways. The results are summarized in 
Table VI. A detailed review of the assumptions and 
limitations of these various level density formulas and 
others has been given by Ericson.19 

Halbert and Durham17 have studied level densities in 
Ali3

26, Si633, and Ai8
37 at excitation energies similar to 

those of interest here. They fit their data with an 
expression of the form 

D(E) = C(E-b)2 exp{-2[>(£-Z>)]1/2} (40) 

and find the best fit "pairing energy" b equal to zero 
except for Al26, where it is — 1 MeV. Equation (40) is 
very similar to Eq. (38) when U is substituted for 
(E—b). In order to make a comparison with the Mg24 

data, we shall assume that the single-particle level-
density G, and hence the constant "a" are both pro
portional to A as has been suggested by Lang and 
Le Couteur.20 The observed values of "a" divided by 
the corresponding atomic mass are given in Table VII. 
The estimate of the level spacings of Mg24 given by 
Eq. (40) using mean value 0.158 of the ratio a/A are 
shown in column (iv) of Table VI. We see that the four 

TABLE VII. Comparison of level-density parameters based on 
Halbert and Durham's analysis (Ref. 17) and various level den
sity formulas used in the text, (a), (b), and (c) give the value of 
a/A corresponding to the columns of Table VI. 

Halbert and Durham 
(Ref. 17) (d) 

Al26 S33 A37 Mean (a) (b) (c) 

a/A 0.146 0.167 0.162 0.158 0.108 0.129 0.095 

a Equation (38) with both "a" and "B" determined by fitting to two 
normalization points. 

b Newton's prescription (Ref. 15, see text). 
0 Cameron's prescription (Ref. 16, see text). 
d Halbert and Durham's prescription (Ref. 17, see text). 

19 T. Ericson, Phil. Mag. Suppl. 9, 425 (1960). 
20 J. M. B. Lang and K. J. LeCouteur, Proc. Phys. Soc. (London) 

A67, 586 (1954). 

different methods give reasonably consistent results for 
the extrapolation of the observed level spacing from 
19.5-MeV excitation to the other energies. 

The spacing of spin-2 and spin-4 levels have been 
normalized to 25.0-MeV excitation using the mean ex
trapolation described in Table VI. The resulting de
pendence of level spacing on spin is shown in Fig. 7 
to be consistent with a spin cutoff parameter o-=3.5. 
Also shown in the figure is the dependence of level 
width on spin. The "experimental" points for spin 2 
and 4 were obtained by combining the computed values 
(T)/(D) in Table IV with the values of (D) taken at 
25-MeV excitation energy. 

7. SPIN CUTOFF PARAMETER AND MOMENT 
OF INERTIA OF Mg24 

The spin dependence of the level spacing in the Fermi 
gas model is given by 

Dj=D0(E){(2J+l)-i exp-[ / ( /+l) /2c7 2 ]} , (41) 

where the spacing of spin-zero levels D0(E) depends on 
the excitation energy E through Eq. (36). / is the 
level spin and a is the spin cutoff parameter. The ex
ponent in Eq. (41) is related to the rotational energy, 
and hence to the moment of inertia / through: 

Evot=(h2/2I){J(J+l)} 
= (*/2o*){/(/+l)}, 

(42) 

where t is the nuclear temperature already defined by 
Eq. (32) in terms of the energy U and the constant 
"a." From Eqs. (42) and (37), we get 

= 108 keV, 
(43) 

for 25-MeV excitation energy in Mg24. The values of a 
and a112 were taken to be 3.5 and 1.71 from Fig. 7 and 
Table VII, respectively. It should be noted that the 
product [o-2(tf)1/2] in the denominator of Eq. (43) is less 
sensitive to the exact value of "a" then is a2 itself. 
This is because the method (described in the previous 
section) of normalizing the low-spin level spacings to 
25 MeV is such that small values of "a" lead to large 
a and vice versa. 

The value of 108 keV for h2/2I at 25-MeV excitation 
is compared in Table VIII with that deduced from the 
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FIG. 7. The average level spacings, 
(D)j and average total level widths 
(Y)j obtained from statistical theory 
transmission functions and from meas
ured total widths for an excitation 
energy of 25 MeV in Mg24. The ob
served spacings and widths (points) 
of the J— 2, 4 states have been nor
malized to this energy as discussed 
in the text. The relative spacings and 
widths for various values of the spin 
cutoff parameter are shown by the 
solid lines. 
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level spacings of the ground-state rotational band and 
with the rigid-body value for Mg24. The latter depends 
both on the radius R and the deformation parameter /3 
through the relation 

¥ 42.7 X103 

keV, 
2/rigid 2{(25M^2(l+0.31^+0.44^+- • •)} 

where A is the mass number and R is in fermis. The 
value of the deformation parameter fi equal to 0.5 is 
deduced from Coulomb excitation studies21 of the E2 
radiation width to the first excited state of Mg24 and 
is consistent with that deduced by minimizing the total 
energy for all the occupied Nilsson levels.22 Examina
tion of Table VIII shows that the moment of inertia 
at 25-MeV excitation is equal to the rigid-body value 
for the nuclear size and shape used in column three. 
It seems likely that a somewhat smaller radius param-

TABLE VIII. Comparison of theoretical and experimental 
values of h2/2I, where / is the moment of inertia for two excita
tion energies £* in Mg24. 

Exp at 
£* = 25 
MeV 

Ground-state 
rotational 

band 

Rigid-body value 
R = 1AA™, R = 1.2A^, 

0=0.5 0 = 0.5 

108 237 108 147 

21 H. E. Gove and C. Broude, in Proceedings of the Second Con
ference on Reactions between Complex Nuclei, 1960, edited by A. 
Zucker, F. T. Howard, and E. C. Halbert (John Wiley & Sons, 
New York, I960), p. 57; I. Kh. Lemberg, ibid., p. 112. 

22 H. E. Gove, in Proceedings of the International Conference on 
Nuclear Structure, Kingston, edited by D. A. Bromley and E. Vogt 
(University of Toronto Press, Toronto, Canada, 1960), p. 438. 

eter would be more realistic, in which case the measure
ments suggest that the value of the deformation must 
be somewhat increased since the rigid-body value of the 
moment of inertial can not be exceeded. 

8. CONCLUSIONS 

A discussion of the theory of average cross sections 
for heavy-ion reactions showed that the conventional 
statistical theory is not necessarily applicable because 
of the large value of 2ir(Tic)/D for the predominant exit 
channels. However, a comparison of experimental and 
theoretical average cross sections of the C12(C12,a)Ne20 

reactions showed generally good agreement between 
the theory and experiment for both the magnitudes of 
integrated cross sections and the shapes of differential 
cross sections. The quantitative comparison of theory 
and experiment included estimates of the effect of 
cross-section fluctuations through the finite size of the 
averaging interval. Like the similar agreement between 
theory and experiment which was found for the cross-
section fluctuations of the same reactions,1 the success 
of the conventional statistical theory for the C12+C12 

reactions suggest that the compound-nucleus mecha
nism predominates. The variety of measurements com
pared successfully with the compound-nucleus calcula
tions make the present comparison one of the most 
comprehensive tests which the compound nucleus has 
received. 

The level spacings obtained from measured total 
widths and calculated transmission functions agree with 
other data for Mg24. The level spacings yield accurate 
values of the spin cutoff parameter which, in turn, 
yield reasonable values of the moment of inertia of 
Mg24 at high excitation energies. 


